6.2 Constructing Antiderivatives Analytically

In this section we will find analytical expressions of antiderivatives. Recall that a function F is an antiderivative of a function f if $F^{\prime}(x)=f(x)$. However, for any constant $C, F(x)+C$ is also an antiderivative of f. That is, there are infinitely many antiderivatives of a given function $f(x)$. They all differ by a constant and the family of antiderivatives is represented by $F(x)+C$. The notation of the general antiderivative is called an indefinite integral and is written

$$
\int f(x) d x=F(x)+C
$$

The symbol \int is the symbol of integration, $f(x)$ is called the integrand and C is called the constant of integration. Keep in mind the relationship between $f(x)$ and $F(x)$ which is given by $F^{\prime}(x)=f(x)$.

Warning: The indefinite integral is a short-hand notation for a family of functions $F(x)+C$ with the property $F^{\prime}(x)=f(x)$ for all x. It is not to be confused with the definite integral $\int_{a}^{b} f(x) d x$ which is a real number.

Example 6.2.1

Show that $\int 0 d x=C$.

Solution.

Since the derivative of a constant function is always zero, we have

$$
\int 0 d x=C
$$

Example 6.2.2

Show that $\int k d x=k x+C$ where k is a constant.

Solution.

Since the derivative of $k x$ is just k,

$$
\int k d x=k x+C
$$

Example 6.2.3

Show that $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ for $n \neq-1$.

Solution.

By the power rule, if $F(x)=\frac{x^{n+1}}{n+1}$ then $F^{\prime}(x)=x^{n}$. Thus,

$$
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C
$$

Note that this formula is valid only if $n \neq-1$ for if $n=-1$ we would have $\frac{x^{0}}{0}$ which doesn't make sense. The case $n=-1$ is treated in the next problem.

Example 6.2.4

Show that

$$
\int \frac{d x}{x}=\ln |x|+C .
$$

Solution.

Suppose first that $x>0$ so that $\ln |x|=\ln x$. Then $(\ln |x|)^{\prime}=(\ln x)^{\prime}=$ $\frac{1}{x}$. Now, if $x<0$ then $\ln |x|=\ln (-x)$ and by the chain rule $(\ln |x|)^{\prime}=$ $(\ln (-x))^{\prime}=\frac{-1}{-x}=\frac{1}{x}$. Thus, in both cases $(\ln |x|)^{\prime}=\frac{1}{x}$

Example 6.2.5

Show that for $a \neq 0, \int e^{a x} d x=\frac{e^{a x}}{a}+C$.

Solution.

If a is a nonzero constant and $F(x)=\frac{e^{a x}}{a}$ then $F^{\prime}(x)=e^{a x}$. This shows that

$$
\int e^{a x} d x=\frac{e^{a x}}{a}+C
$$

Properties of Indefinite Integrals

$$
\int[f(x) \pm g(x)] d x=\int f(x) d x \pm \int g(x) d x .
$$

To see why this property is true, let $F(x)$ be an antiderivative of $f(x)$ and $G(x)$ be an antiderivative of $g(x)$. The result follows from the fact that $\frac{d}{d x}[F(x) \pm G(x)]=f(x) \pm g(x)$.

$$
\int c f(x) d x=c \int f(x) d x
$$

To see this, suppose that $F(x)$ is an antiderivative of $f(x)$. Then $\int f(x) d x=$ $F(x)+C$. But $\frac{d}{d x}(c F(x))=c f(x)$ so that $c F(x)$ is an antiderivative of $c f(x)$, that is, $\int c f(x) d x=c F(x)+C^{\prime}$. This implies
$\int c f(x) d x=c F(x)+C^{\prime}=c\left(\int f(x) d x-C\right)+C^{\prime}=c \int f(x) d x-c C+C^{\prime}=c \int f(x) d x$.
Note that the constant $-c C+C^{\prime}$ is ignored since a constant of integration will result from $\int f(x) d x$.

Example 6.2.6

Find

$$
\int\left(e^{-3 x}+\frac{3}{x}-\frac{5}{x^{3}}\right) d x
$$

Solution.

Using the linearity property of indefinite integrals together with the formulas of integration obtained above we have

$$
\begin{aligned}
\int\left(e^{-3 x}+\frac{3}{x}-\frac{5}{x^{3}}\right) d x & =\int e^{-3 x} d x+3 \int \frac{d x}{x}-5 \int x^{-3} d x \\
& =-\frac{e^{-3 x}}{3}+3 \ln |x|+\frac{5}{2 x^{2}}+C \llbracket
\end{aligned}
$$

Once we have found an antiderivative of $f(x)$, computing definite integrals is easy by the Fundamental Theorem of Calculus.

Example 6.2.7

Compute $\int_{1}^{2} 3 x^{2} d x$.

Solution.

Since $F(x)=x^{3}$ is an antiderivative of $f(x)=3 x^{2}$, by FTC we have

$$
\int_{1}^{2} 3 x^{2} d x=\left.x^{3}\right|_{1} ^{2}=2^{3}-1^{3}=7
$$

